進階篩選

Technical category
  • 共有:2筆資料
  • 顯示:
  • 筆商品
    • 非破壞式太赫茲深度學習電腦斷層攝影系統

      FutureTech 非破壞式太赫茲深度學習電腦斷層攝影系統

      We invented a non-destructive terahertz (THz) deep-learning computed tomography system based on time-domain spectroscopy. In the method, THz time-domain signals are profiled. Multiple features are retrieved from those profiles by a trained modeltransformed to the spatial domain to reconstruct a cross-sectional tomographic image. We have also invented a 3D THz tomographic system based on multi-scale spatio-spectral feature fusion in a multi-scale manner. We believe our work will stimulate further applicable research of THz tomographic imaging with advanced computer vision techniques.
    • 基於深度學習的光刻電路失真預測,光罩修正及新穎布局圖樣偵測的設計自動化技術

      FutureTech 基於深度學習的光刻電路失真預測,光罩修正及新穎布局圖樣偵測的設計自動化技術

      The DNN models of this technology include a LithoNet, an OPCNet,a layout novelty detection network. LithoNet is a learning-based pre-simulation model for layout-to-SEM contour prediction,OPCnet is a dual network of LithoNet for photomask optimization. Integrated with a well-trained LithoNet, our layout novelty detection network, consisting of a self-attention guided LithoNetan autoencoder, can check if there are layout patterns easily resulting in local distortions in contours of metal lines based on multi-modal (global-local) feature fusion.
  • 1