進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • 個人化精準腫瘤治療顧問-腦轉移腫瘤

      FutureTech 個人化精準腫瘤治療顧問-腦轉移腫瘤

      PCA-BM includes two models: “Automatic BMs Segmentation AI Model”" Distant Brain Failure Prediction Model". The former one uses C2FNAS (coarse to fine network architecture search) to detect the location, size,number of brain metastases. The latter uses radiomics to extract numerous radiographic featuresemploys machine learning methods such as XGBoost to establish a prognostic model of brain metastases. PCA-BM provides more precision treatment decisions for patientsimproves personalizedaccurate overall stereotactic radiosurgery planning.