進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • 自主巡航水下無人載具

      FutureTech 自主巡航水下無人載具

      The developed Unmanned autonomous underwater vehicles (AUV) included 3-D modeling technology, wireless power transfer between sub-system in AUV, GPS underwater locate system, low complexity frequency domain on ocean floor analyze with AI network, underwater objects detection network, image dehaze network on groundunder water, underwater color correction network, underwater objects classification network, underwater optical characteristic algorithmLED color compensation system.
    • 自主式水下無人載具光學與聲學系統之創新技術開發

      FutureTech 自主式水下無人載具光學與聲學系統之創新技術開發

      This technology integrates acoustic-optical sensing calculationrecognition information,uses hydrophones to estimate the state of dynamic targetsvisually recognizelocate the dynamic target for vehicle motion control. The fusion acoustic-optical sensing architecture can be used according to the target statecharacteristics. By calculatingadapting to the environmenttarget state characteristics, the exploration tasks will be performed.
    • The Development of Lead-Free Piezoelectric MEMS Triaxial Accelerometer System for Safety Monitoring of Unmanned Vehicles

      FutureTech The Development of Lead-Free Piezoelectric MEMS Triaxial Accelerometer System for Safety Monitoring of Unmanned Vehicles

      "The team established material doping technology to greatly improve the piezoelectric properties of lead-free materials,successfully prepared MEMS lead-free triaxial piezoelectric accelerometers. The use of lead-free materials is the world's first development result. In addition, the team also integrated sensors, back-end circuitsuser interfaces, applied the acceleration gauge system to the safety monitoring of unmanned vehicles,successfully integrated the intelligent integrated sensingcontrol system required in the Internet of Things era."
    • AIoT smart aquaculture management systems

      AI & IOT Application FutureTech AIoT smart aquaculture management systems

      Our team construct an AIoT smart aquaculture management system. The management system mainly consists of: (1) Image Behavior MonitoringAnalysis Subsystem (2) Smart Feeding Subsystem (3) IOT Subsystem including underwater sensors, ROV,Drone (4) Cloud Subsystem (5) Big Data Analysis Subsystem.
    • 1550-nm固態式光學雷達晶片開發

      FutureTech 1550-nm固態式光學雷達晶片開發

      In autonomous driving, LiDAR can clearly distinguish the objectsget the object information such as speeddistance at medium-range (~100 m) for autonomous driving scheme entering Level 3. Therefore, in this study, we combine the reflective optical phased array (OPA) chip1550-nm VCSELs with a photodetector, a ToF chip,a microcontroller to produce an eye-safe, all-solid-state,low cost (less than $100 USD) LiDAR module, which is the world's leading LiDAR technologymore cost-effective than the current products for autonomous vehicle market.