進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • 5D智慧城市─SmartES平台

      AI & IOT Application FutureTech 5D智慧城市─SmartES平台

      NCREE has originally developed 5D digital space—on the basis of 3D city modelsconnections of different kinds of sensors around the world— is an online to offline virtual space with a combination of rising 5G technology advantages. Collectingreorganizing various 3D cartographic data with Building Information Modeling (BIM), satellite imagery, UAV 3D modeling, LiDar point cloud data, etc., can increase the diversity of the buildinglandscape. 5D+5G smart city platform would accelerate the 5D smart city to become the digital twin of a real city.
    • Intelligent Image RecognitionAnalysis System for Small-sized Insect Pest

      AI & IOT Application FutureTech Intelligent Image RecognitionAnalysis System for Small-sized Insect Pest

      This study built an automatic insect pest image identification system based on tiny Yolov3 deep learning model. By optimizing the tiny Yolov3 detection model, images of insect pests on scanned sticky paper can be automatically identified. The system achieves a testing accuracy of 0.93, 0.90 for whitefliesthrips respectively.
    • 設施蘆筍農業機具與智能作物生產決策系統

      FutureTech 設施蘆筍農業機具與智能作物生產決策系統

      An automated agricultural machinean intelligent crop production decision-making system are developed for greenhouse asparagus growth monitoring. Automationenergy-saving machinery technologiesInternet of Things/information communication techniques are adopted to achieve the goal of "saving laboreffort"improve "management technologies". The developed machinesystem can greatly improve the qualityquantity of domestic asparagus production,achieve the dual goals of stabilizing the outputenhancing quality of harvested asparagus.
    • Real-time identification of crop losses using UAV imagery

      AI & IOT Application FutureTech Real-time identification of crop losses using UAV imagery

      This technology integrates 1000+ times of UAV imaging experiences with labeled rice lodging images for training. A rice lodging recognition model using deep learning reaches 90 accuracy. The recognition model can be deployed in a microcomputer mounted on UAVs to implement edge computing. While taking aerial images, the inference can be completedreveal lodging areadamage level in-time.
    • Air/ground cooperation for optimal rice harvesting model

      AI & IOT Application FutureTech Air/ground cooperation for optimal rice harvesting model

      The Air/Ground cooperation for optimal rice harvesting model is established to provide a visual harvesting decision service on a cloud platform. Drones and mobile devices are employing to estimate grain moisture and forecast the variation of harvest moisture content (HMC) in the coming days by huge amounts of imagery data, deep learning algorithms, and weather forecasts. This model can benefit in several aspects, such as setting an accurate and comprehensive optimal harvest schedule, reducing the cost of agricultural apparatus and barn ovens, ensuring the rice quality, and maximizing farmers' benefits. The potential value of the model practice could be more than a billion in Taiwan.
    • A Fall Detection System based on AI Edge Computing Technique

      AI & IOT Application Innotech Expo A Fall Detection System based on AI Edge Computing Technique

      In order to solve the undiscovered problem that caused by the fall ofelders, we develop a deep learning based systemnamed it 「SkyEye」,which includes our own sensor 「AI Falling Image Sensor」, a cloud sever that storespushes information about fall eventsa mobile app that communicates with users.
    • Intelligent Scalp Detection System

      Precision Health Ecosystem FutureTech Intelligent Scalp Detection System

      This system uses the innovative AIoT application to target annoying scalp maintenance problemsdevelops an intelligent scalp detectionmanagement system. The core of the technology is to use deep learning-based object detection models. Tens of thousands of microscopic image data sets that are labeledtrained for scalp symptoms. As a result, the scalp image recognition module is develop, such as dandruff, hair loss, oil, and inflammation, etc. Hence this system can provide scalp detection, and maintenance effectiveness tracking functions lead scalp maintenance services to a new level of intelligent management.
    • 果園雷射除蟲機器人

      FutureTech 果園雷射除蟲機器人

      (1) Image recognition3D positioning of the pest: Modularize the system for testing on the orchard. (2) High efficiency laser pest control scanning system: It was developed to be suitable for windlessbreezy environments. (3) Enhance the economic tracked vehicle for hillside field: Self-developed power designsteering control based on dynamic model,(4) Field UGV control platform: Based on the preciseaccurate positioning in field, when robot operates on the reference path which planned by map, it can do path trackingdynamically obstacle avoiding in real-time.
    • 人工智慧機器人應用於植物醫學之研究-以甜椒為例

      FutureTech 人工智慧機器人應用於植物醫學之研究-以甜椒為例

      The sweet pepper cultivationplant protection robot developed includes three parts: the intelligent image identificationpositioning system of sweet pepper diseasesinsect pests is composed of YOLO4 deep learning modelimage 3D vision integration. It can perform disease detectionspatial positioning,guide the robotic arm spraying device to accurately spray the diseased. The automatic walking system can use GPS to plan the movement path of the plant protection robot in the field, search for plants infected with pestsdiseases,perform the tasks of pest control.
    • AI 2 Robot City

      AI & IOT Application FutureTech AI 2 Robot City

      ”AI2 Robot City” is a game-based learning kit for primary and secondary school students, which combines AI image-recognition teaching tool of MIT App Inventor and the computational thinking board game named as "Robot City." Through this learning kit, users will learn to make smart cars, create image-recognition models, write and perform mobile application. Users will learn to write a program to recognize the personal cards in the board game, and furthermore to control the smart cars with blue-tooth and compete in the computational thinking board game.
    • Intelligent image-guiding needle puncture

      Precision Health Ecosystem FutureTech Intelligent image-guiding needle puncture

      Optical coherence tomography using an optical probe with a diameter of 0.9 mm, combined with the 14-18 gauge needle, is used for clinical needle puncture. Using the real-time image obtained from the tip of the needle in the tissue, the needle position can be identified. Combined with artificial intelligence can achieve objective, accurate and automatic identification of the tissue, which has been successfully verified in anesthesia and laparoscopic surgery.
    • The Application of Intelligent Agricultural Control System on Orchard

      AI & IOT Application FutureTech The Application of Intelligent Agricultural Control System on Orchard

      This project integrated with industrial foresight technologies, including UAV, artificial intelligenceimage recognition, to collect real-time images, apply algorithm in evaluation, link the technology of IOT (Internet of Things)environment sensing,use unmanned vehicle to conduct controlling work.