進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • Vacuum Functional Coating Technology

      Electronic & Optoelectronics FutureTech Vacuum Functional Coating Technology

      Here we prepare a non-evaporative getter (NEG) film using magnetron sputtering. A vacuum chamber with a sputtered NEG film can maintain ultra-high vacuum (-10 Torr level) without any pump after activation. The activation temperature can be controlled below 200 °C according to different process conditions. The activated NEG film adsorbs residual gases in the vacuum system to achieve the UHV.
    • 微流道繞射晶片搭配雷射系統高速準確計數全血中循環腫瘤細胞/細菌

      FutureTech 微流道繞射晶片搭配雷射系統高速準確計數全血中循環腫瘤細胞/細菌

      A microfluidic diffraction device is developed for determination of CTC/bacteria from human whole blood with a home-constructed laser beam system. We design the optical structuretransfer the structure to transparent plastic substrate. The plastic diffraction die is modified with antibodies of the target to combine a fluidic system as a microfluidic diffraction chip. When human whole blood with CTCs/bacteria flows through the chip, the number of cells/bacteria can be obtained directly with label-free. The devices has been applied in clinical diagnosis of oesophagealendometrial cancer.
    • Low-temperature magnesium hydrogen storage materials and energy storage applications

      Smart machinerynovel materials FutureTech Low-temperature magnesium hydrogen storage materials and energy storage applications

      The goal of this project is to study "low-temperature magnesium hydrogen storage materials and energy storage applications". Mg hydrogen storage materials with a hydrogen storage capacity of 5.0 wt% is developed,and their dehydrogenation rate at 250℃ will be significantly enhanced using a forcible pump. The Mg hydrogen storage powders are inserted into a tank for cyclic hydrogenation-dehydrogenation tests. The H2 gas desorbed from the tank is supplied to a high-temperature proton exchange membrane fuel cell (HT-PEMFC,160℃) for power generation.