進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • Atomic layer technologies for advanced materialsmodules

      Smart machinerynovel materials FutureTech Atomic layer technologies for advanced materialsmodules

      With rapid evolution of Moores lawsemiconductor technology nodes down to sub-10 nm, advanced devicematerial technologies capable of Å accuracy are highly demanded. Thus we developed atomic layer technologies including atomic layer deposition, atomic layer annealing, atomic layer epitaxy,atomic layer etching, etc. for extreme control of materialsstructures with Å precision.
    • Monolithic hybrid type quantum dots micro-light-emitting diodes for the full-color pixel array

      Electronic & Optoelectronics FutureTech Monolithic hybrid type quantum dots micro-light-emitting diodes for the full-color pixel array

      A wavelength tunable micro-light-emitting diodes fabricated by the nanometer-level etching technology, the strain-induced engineering can effectively shift the emission wavelength from green to blue. Meanwhile, we introduced the ALD for the passivation layer,the super inkjet printing system used to form the color-conversion layer to emissive red light. Finally, a hybrid type full-color micro-LED has been fabricated with the monolithic epitaxial wafer.
    • 智慧型可攜式極低功耗氣體感測晶片與應用(I+-NOSE)

      FutureTech 智慧型可攜式極低功耗氣體感測晶片與應用(I+-NOSE)

      A technique compatible to IC process has been presented to prepare gas sensing chips the lightly-doped region of nanoelectronic devices are grown with different sensing materials to form a gas sensor array. During gas sensing, individual nanodevice was Joule-heated, reducing power consumption to microWatts/device, solving the current high power consumption problem. With self-calibration of temperature, humidityinterfering gas, problems like cross-sensitivity, quantification, specificitysensitivity are solved. A demonstration of I+Nose with smart phone was presented for CO detection.