進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • 多光子激發之高光譜顯微影像技術

      FutureTech 多光子激發之高光譜顯微影像技術

      We have successfully developed a multiphoton-induced hyperspectral microscopy based on a 1064 nm femtosecond excitation source. Nonlinear excitation by the laser localized to the focal point allows efficient non-descanned detection (NDD) while achieving optically sectioned imaging. The use of 1064 nm laser excitation increases the imaging depth while minimizing sample damage. The system combines the advantages of NDD for 3D imagingrich spectral information through confocal hyperspectral imaging, leading to potential applications in the emerging material R&Dbiomedical research.