進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • Low-temperature magnesium hydrogen storage materials and energy storage applications

      Smart machinerynovel materials FutureTech Low-temperature magnesium hydrogen storage materials and energy storage applications

      The goal of this project is to study "low-temperature magnesium hydrogen storage materials and energy storage applications". Mg hydrogen storage materials with a hydrogen storage capacity of 5.0 wt% is developed,and their dehydrogenation rate at 250℃ will be significantly enhanced using a forcible pump. The Mg hydrogen storage powders are inserted into a tank for cyclic hydrogenation-dehydrogenation tests. The H2 gas desorbed from the tank is supplied to a high-temperature proton exchange membrane fuel cell (HT-PEMFC,160℃) for power generation.
    • 高熵合金鋰離子電池負極材料

      FutureTech 高熵合金鋰離子電池負極材料

      In the prior art of high-efficiency anode materials for lithium-ion batteries, we designed a high-entropy compositionmanufactured it through a simplemass production method. This technology inherits the cocktail effect of high-entropy alloys by combining highly active elementsmetal elements. This material can be manufactured by a simple mass production method. It shows high energy density, high Coulomb efficiencyhigh cycle stability,becomes a promising anode material for lithium-ion batteries.