進階篩選

Technical category
    • Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Smart machinerynovel materials FutureTech (test)Application of inorganic nanofiber technology to promote the development of biotechnology

      Inorganic porous nanofibers with surfaceinterface defects are prepared through humidity-controlled electrospinninghigh-temperature annealing technology. Under the irradiation of light sources of different wavelengths (380~780 nm), the bound electrons stored in the valence band can be excited to the conduction band to form free electrons on the surface of the material, generating different intensities of microcurrents, light sensitivitymicrocurrent changes. Because the "inorganic nanofiber" technology has high uniquenesshigh product compatibility, it can be applied to a wide range of markets.
    • AI深度壓縮工具鏈及混合定點數CNN運算加速器

      FutureTech AI深度壓縮工具鏈及混合定點數CNN運算加速器

      Assisted by in-house AI deep compression toolchain (ezLabel, ezModel, ezQUANT, ezHybrid-M), the proposed technology supports automatic AI model designoptimization with the integrated performance of 120x model size reduction70x power reduction in 2D CNN model,develops a world-first 1/2/4/8-bit CNN model realized by the developed high efficiency Hybrid fixed point CNN NPU (Hybrid-NPU), which has been verified in Xilinx ZCU102 FPGAachieves the performance up to 2.5 TOPS(8-b)/ 20TOPS(1-b)@28nm technology running at 550MHz4TOPS/W energy efficiency.