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Abstract—It is crucial for future 5G networks to intelligently
understand how users move so that the networks can allocate
different resources efficiently. In this paper, we try to find
practical features to identify four common types of motor-
ized transportations, including High-Speed Rail (HSR), subway,
railway, and highway. We propose a system architecture that
can provide accurate, real-time, and adaptive solution by using
cellular information only. Because we do not use GPS as that in
most of the prior studies, we can reduce energy consumption,
size of log data, and computational time. Around 500-hour
data are collected for performance evaluation. Experimental
results confirm the effectiveness of the proposed algorithm,
which can improve well-known machine learning algorithms to
approximately 98% classification accuracy. The results also show
that battery consumption can be reduced about 37%.

Index Terms—Transportation Type Identification, Machine
Learning, Cellular Information, Classification, 5G

I. INTRODUCTION

One of the important features in future 5G networks is net-
work slicing. It allows a mobile operator to provide dedicated

virtual networks with function-specific resources to different

types of users over a common network infrastructure. Thus, the

networks are able to support numerous and various services

envisaged in 5G. As shown in Fig. 1, a single physical network

denoted as next generation network will be sliced into multiple

virtual networks that can support different mobility types

of users. Different network resources and specific mobility

policies will also be allocated to different types of users across

a common core network. It is critical to enhance intelligence

in the 5G era to automatically recognize a service type, infer

the appropriate provisioning mechanisms, and establish the

required network slices.

In order to incorporate intelligence into next-generation

networks, the service requirements of users need to be in-

vestigated first. In this paper, we focus on analyzing user

mobility as shown in the red box in Fig. 1 to identify user’s

transportation type. We apply machine learning algorithms

into Transportation Type Identification (TTI). We focus on

identifying motorized transportation types because the moving

speed of non-motorized types such as walking, jogging, and

biking are not fast enough for mobile operators to allocate

specific resources. Moreover, the non-motorized types could

be detected by using Inertial Measurement Unit (IMU) data

such as accelerometer, gyroscope, and rotation vector in the

smartphone [1], [2].
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Fig. 1. Overview of next generation networks.

In this paper, we try to find practical features to identify

four common types of motorized transportations, including

High-Speed Rail (HSR), subway, railway, and highway. We use

various machine learning algorithms to train the classification

models. Many well-known learning algorithms are evaluated

and the results are presented in this paper. The main contri-

butions of this paper include:

1) We propose a system architecture that can provide ac-

curate, real-time, and adaptive solution for TTI by using

cellular information only. The architecture could be

further applied to different applications such as carbon

footprint, intelligent navigation, elderly tracking, smart

city, and transportation traffic analysis.

2) We propose to extract Base Station (BS) identifica-

tion as the location information for TTI. We are the

first to integrate cellular data and location information

and propose Cellular Information with Sliding Window

(CISW) algorithm for machine learning algorithms. The

proposed CISW is not limited to smartphone but also

can be used for Internet of Things (IoT) devices.

3) Around 500-hour labeled data for offline training are

collected by our prior work [3], [4]. We release the

dataset, source code, and pre-trained models to anyone

who is interested in exploring TTI problem more [5].

II. CHALLENGES

A smartphone can provide many information, ranging from

GPS, accelerometer, magnetometer, barometer, gravity sensor,
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light sensor, to cellular/wireless radios. Although these infor-

mation could help TTI, there are still some challenges for

using these data.

• Environmental limitations: GPS is useful for TTI be-

cause it provides the physical position of the user. How-

ever, GPS requires line-of-sight between devices and

satellites. Thus, it is not suitable for tunnels or the urban

environment due to obstacles. Especially, GPS is not

available in the subway which is underground. For mag-

netometer, barometer or light sensor, they would be af-

fected easily by electronic devices, humidity/temperature,

and sunlight.

Our solution: Nowadays, base stations are widely de-

ployed along public transportation no matter on the

ground or under the ground. As described in Sec. V-B, we

use cellular data instead of GPS signals for positioning.

• Energy consumption: Computing resources are the main

limitations for long-term sensing when using smart-

phones. High sampling rate would drain battery fast. GPS

also consumes considerable energy [6].

Our solution: We don’t use GPS because we use cellular

information instead. As discussed in Sec. V-C, we pro-

pose a new algorithm which only needs BS information

and the frequency of handover. Thus, event-based sam-

pling can be used. It can reduce energy consumption, size

of log data, and computational time.

• Privacy: The more sensor readings from a smartphone,

the more possibility that we can detect where the user is

and what physical activity the user is performing.

Our solution: Because we only use cellular information,

the granularity of location information we collect is

coarser than that using GPS. Also, we don’t need other

sensor readings.

III. RELATED WORK

The TTI problem has been considered as an activity recog-

nition problem. Traditionally, rule-based algorithms are pro-

posed for TTI problems. They seek the best thresholds and are

designed with if-else patterns. However, the algorithms would

be complicated for different transportation types. Therefore,

learning-based algorithms become a promising paradigm. Re-

cently, many studies apply machine learning techniques into

TTI by using the sensed data from smartphones. Nowadays,

more and more studies pay attention to supervised learning
algorithms and aim to improve accuracy by extracting more

discriminative features from the data sensed by smartphones.

Here, we categorize prior studies into four types of sensed

data that are commonly used for TTI problem.

• GPS/GIS information: These algorithms apply map-
matching technique to match the GPS/Global Information

System (GIS) trajectories of the user with coordinates

of transportation in the referenced database. GIS data

can be used to create more distinguished features as

detailed in [7], [8]. In addition to GPS/GIS information,

the authors of [9], [10], [11], [12] use smartphone sensors

to collect accelerometer data of different transportation
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Fig. 2. Overview of the proposed system.

types, which achieve a better performance than those

using GPS data only. Zheng et al. [13] use common

statistical features such as mean velocity, expectation of

velocity, top three velocities, and top three accelerations

to identify four different transportation types (bike, bus,

car, walking). In addition, Zheng et al. [14] further

introduce more advanced features including the Heading

Change Rate (HCR), the Stop Rate (SR), and the Velocity

Change Rate (VCR), which achieve a more accurate

result.

• Inertial Measurement Unit (IMU) data: These algorithms

use accelerometers, gyroscopes, rotation vectors, and

magnetometer to collect more discriminative information

for the behaviors of smartphone users [1], [2].

• Other sensors: The authors of [15], [16] use body tem-

perature, heart rate, light intensity obtained from other

sensors as features, and are able to build a model to

predict user activities, including walking, running, rowing

and cycling.

• Wireless signals: Movement can also be detected by using

the change in cellular, Wi-Fi, or bluetooth signals. For

example, the authors of [17], [16], [18] use fluctuation

in cellular signal strength to detect whether the user is

stationary, walking, or driving.

In this paper, we focus on cellular information (i.e., the

category of wireless signals). Instead of taking the signal

fluctuations as features in the prior studies, we propose a

new algorithm to integrate location information and cellular

data that have not been used in prior works. Due to the

wide deployment of cellular towers (aka BS) along pub-

lic transportation, cellular information is more reliable than

GPS/GIS data, especially for subways. Our algorithm only

focuses on which cellular tower the smartphone connects to

and the frequency of handover. Thus, it can reduce energy

consumption, data size, and CPU power.

IV. SYSTEM OVERVIEW

A. Proposed Architecture

Fig. 2 depicts the overview of the proposed system archi-

tecture. There are two phases. The offline phase generates a

classification model by the baseline dataset. The online phase
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updates (fine-tunes) the model with user’s feedback to improve

the results adaptively. In the end, different personal model is

generated for each user and the new dataset can be stored

in the database for further analysis. These new datasets are

helpful for a new version of the initial model training. Next,

we present the detail of each procedure.

1) Initial data collection: The baseline data such as GPS

and cellular information are collected by ourselves.

Noted that GPS information is not needed for our

algorithm. We collect it because we may use it to verify

the correctness of our labeling in some cases. With the

APP we developed [3], [5], we have collected data from

each type of transportation with time stamps, which are

used for marking correct label for each data sample. So

far, we have collected over 500-hours data as shown in

Table I.

2) Data upload: The collected data in Step 1 are uploaded

to our server through the Internet and saved in the SQL-

based database.

3) Model training: Through cleaning and normalizing, mul-

tiple features are extracted (original data) by CISW.

We can select the best performance model with various

validations and tune the best hyper-parameters as shown

in Fig. 3.

4) Model deployment: The pre-trained model is generated

in Step 3. The model can be deployed in the APP or in

the type of application interface such as RESTful APIs

for users to query.

5) Online training: The feedbacks of the users are inputed

to the initial model that can be updated adaptively for

each user as shown in 3. During online phase, the sensed

data from mobile users are transformed to feature vectors

and fed into the pre-trained model developed on the

offline phase to generate the personalized transportation

mode classifier.

6) Feedback collection: We adopt the online learning al-

gorithm as described in Sec. VI-B such that the pre-

trained model can be fine-tuned by user’s feedbacks.

The feedback can be represented as a period of time

with a label the user just marked. We only evaluate the

feasibility of the proposed system. Due to space limit,

how to verify the correctness of user’s feedbacks is out

of the scope of this paper.

B. Typical Workflow

The workflows of training and inference are shown in Fig. 3,

which includes offline phase and online phase. In the offline

phase, we first divide the original collected data as shown

in Table I into test and training sets with proportion of 3:7.

The test dataset is used for final accuracy evaluation. The

training dataset can be further separated into validation data
and training data with proportion of 1:4 for 5-fold cross-

validation. In other words, we split training dataset into 5-fold

datasets evenly and randomly. During training, we use the 4-

fold datasets and we use the dataset in the remaining fold as the

new data we have never used before. In data pre-processing,
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Fig. 3. Typical workflow.

TABLE I
BASELINE DATA DESCRIPTION

Type Duration Sample number GPS availability (%)
HSR 142 hours 12012 69%

Subway 120 hours 8426 0%
Railway 206 hours 42681 68%
Highway 116 hours 38160 86%
Others 56 hours 20804 61%

we remove some outliers, which are deemed abnormal. Next,

the proposed CISW is applied for feature extraction from

the dataset. With the grid search technique, we can tune the

different hyper-parameters among various learning algorithms.

Finally, the best model with highest accuracy will be selected

and evaluated with the test dataset. In the online phase, the

pre-trained model which is generated in the offline phase will

be deployed for general users. The add-up dataset are collected

from the user and fed into pre-trained model after data pre-

processing and CISW. While the user provides the feedbacks

in the form of a series of labels, the pre-trained model will

get a chance to update (fine-tune) the model. It can improve

the accuracy adaptively for personal model.

V. PROPOSED CELLULAR INFORMATION WITH SLIDING

WINDOW (CISW)

In this section, we first introduce the terminologies. Next,

the reference cell table establishment and the proposed CISW

are presented.

A. Terminologies in cellular information

Fig. 4 shows the cellular information retrieved from a smart-

phone when the user keeps moving. The smartphone connects

to the BS with Cell-IDi (in Celli) in the beginning. We

can get the BS information through an Android Application

Interface (API) called onSignalStrengthsChanged(). The BS

information contains: (1) mobile country code (MCC) and

mobile network code (MNC) to identify a mobile network

operator (carrier) globally, (2) location area codes (LAC) or

tracking area codes (TAC) used in 3G and 4G to identify the
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Fig. 4. Cellular information retrieved from smartphone.

location area (the coverage of a group of BSs), (3) Cell-ID,

a generally unique number used to identify each BS, and (4)

primary scrambling codes (PSC) and physical cell ID (PCI)

used in 3G and 4G to identify a cell at physical layer. After

handover, the serving cell of the smartphone changes from

Cell-IDi to Cell-IDj when the user moves to the boundary

of Celli and Cellj . Cell distance Dij is the distance between

BSi and BSj . Cell residence time CRTi is the time from

Cell-IDi to Cell-IDj .

B. Reference cell table

Most of the previous proposed cellular-based algorithms

leverage only the number of handovers and received signal

strength from serving and neighboring BSs for TTI [18], [19].

However, the received signal strength fluctuation is easily

affected by the environment. We further use the location infor-

mation of BSs because we can estimate where the user roughly

is by tracking the serving cell of the smartphone. In other

words, we can identify transportation type by tracking the

sequence of BSs which are near the transportation trajectories.

However, two challenges need to be addressed: (1) How to

get the location information of BSs, and (2) how to know a

cell is located near the transportation trajectory? We propose

to use reference cell table, which is a database maintaining

the cell location information and different types of cell-IDs

near the four transportation types (HSR, subway, railway, and

highway). Next, we elaborate how to use reference cell table

to address the two challenges.

• Location information of BSs: Ideally, we can get the

location information of BSs from mobile operators. How-

ever, many operators won’t release such information.

Fortunately, location information of BSs can be collected

through crowd-sourcing. For example, Google [20] and

OpenCellId [21] collect such information and release

them to public. We also recruited volunteers to collect the

location information of BSs [3] for the top-five operators

in Taiwan. The cell location can then be calculated by

weighted centroid-based approach [22]. The idea is that

a good signal strength corresponds to a close proximity

of the BS. The estimated location of the BS can be

calculated using the following formula with wK being

the weight of the kth measurement:

Fig. 5. The position errors of cell location with Google and OpenCellId.

P =
1∑n

K=1 wK
∗

n∑

K=1

∗wK ∗ PK (1)

In Fig. 5, we compare the Mean Absolute Error (MAE)

of the location of each BS we collected between Google

and OpenCellId. Figs. 5(a) and (b) show the distance

errors between Google and OpenCellId with the database

we created. The distance errors of Google are smaller

than OpenCellId with 300 m in average. This means

that Google database is more accurate in Taiwan. Thus,

we adopt Google database if a BS is not found in our

database.

• Cell-IDs: With the software we developed, we can collect

the Cell-IDs through the whole journeys of different

transportations [3], [5].

In short, we create a reference cell table that contains the

location information and Cell-IDs that can be used for TTI.

C. Cellular Information with Sliding Window (CISW)

The cellular features are extracted by a group of samples,

called segment, in the log files as shown in Fig. 6. Noted that

we integrate samples into one segment with length t seconds.

In addition to the number of handovers, we present two cellular

features which have not been used before. (1) The cell distance

during one segment, and (2) the matched cell number for each

transportation type. More details about the proposed cellular

features are described in the following.

• The handover rate during one segment: Ideally, the faster

the user moves, the more handovers are incurred. In real

world, due to the noisy nature of the wireless signal

propagation and the load of the BS, the serving BS would

switch back and forth between different nearby serving

cells. This phenomenon is called ping-pong effect [23].

It means that the number of handovers with ping-pong

effect cannot represent the speed of the user. In order to

address this phenomenon, we only count the dominate

(unique) serving cell-IDs in one segment.

• The cell distance during one segment: In order to estimate

the moving speed of a user, we can calculate the cell

distance D between first and last serving BS in one

segment (it means the displacement). The BS location

can be retrieved from the reference cell table discussed

earlier.

• The numbers of matched cells for each transportation

type: This feature contains five numbers, each one for
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Fig. 6. Proposed CISW.

one transportation type, including HSR, subway, railway,

highway, and others. We count the numbers of matched

cell-IDs for each transportation type in one segment. The

more matched numbers of a certain type, the more possi-

ble that the user is on the trajectory of that transportation

type.

However, we still cannot make sure that our reference cell

table contains all cell-IDs. It is still possible to encounter

unknown cell-IDs which are not maintained in our reference

cell table. To address this problem, we propose three solutions:

(1) ignore the unknown cell-ID, (2) count unknown cell-ID as

other type (if our reference cell table contains entire cell-IDs,

the probability that the unknown cell-ID belongs to other type

is high), and (3) estimated by historical information. The third

solution can be considered as a new feature presented in the

following.

Because the continuity characteristic of taking transporta-

tion, it is important to take historical information as a feature

for TTI. As depicted in Fig. 6, if we set the window size T
as 4, a new feature, which contains the numbers of historical

matched cells with four segments, is extracted.

VI. EXPERIMENTAL RESULTS

In this section, we first raise a list of questions that select

suitable parameters in CISW. Second, we review the perfor-

mance metrics to verify CISW accuracy. We then elaborate the

performance of CISW by comparing it with some well-known

machine learning algorithms. Finally, we discuss the resource

consumption of the smartphone.

A list of questions that we aim to find the answers are:

1) In CISW, we propose three solutions to overcome

unknown cell-IDs in real-world data. Which one will

improve the accuracy more?

2) How to set the segment length S and window size T in

CISW?

3) Will the online update from user’s feedback achieve

better results than that of offline algorithms in terms of

accuracy, training time, model size, and prediction time?

4) Will CISW reduce resource consumption of smartphone

compared to the baseline algorithm?

Next, we will answer the questions.

A. Evaluation

1) Dataset: We conduct our experiments using the dataset

we collected as shown in Table I. The dataset contains over

500-hours for different transportation types and has two cate-

gories of training data:

• Baseline dataset: This type of data is used for pre-training

model and to verify accuracy in offline phase.

• Add-up dataset: In order to verify the accuracy in online

phase, we collect data from the same user with: (1)

same smartphone, (2) same network operator, (3) same

trajectory of his/her journey. We denote these data as add-

up dataset when we consider the training data for each

trip of the user in online phase.

2) Performance metrics: We employ two metrics precision
and recall to evaluate the data retrieval performance of CISW.

Taking the transportation label as a groundtruth, precision is

the fraction of the retrieved data that are correct, while recall is

the fraction of the correct data that are successfully retrieved.

Both of them are measured by our dataset, and the larger the

better.

In order to measure the overall performance of the model,

the F1-score, F , is considered, which is a weighted average of

the precision and recall [24]. F1-score is defined as following:

2

F
=

1

Precision
+

1

Recall
(2)

B. Performance of CISW

1) Classification results in offline phase: The classification

results are evaluated by popular algorithms, such as K-Nearest

Neighbor (KNN), Support Vector Machine (SVM), Random

Forest (RF), XGBoost (XGBT), Multiple Layer Perception

(MLP), and Stochastic Gradient Descent (SGD) under SVM.

We implement the learning algorithms with python scikit-

learn library [25] and tensorfolw [26]. First, the comparisons

between the three proposed solutions are presented. Next,

the comparisons between different segment lengths S and

windows size T are elaborated. Due to page limit, we only

show the results of average F1-score for each algorithm.

• Accuracy with three proposed solutions: The results with

different segment lengths S are shown in Fig. 7. For

solution 1, as shown in Fig. 7-(a), XGBT outperforms

others and achieve 97% F1-score when S is set to 240

seconds. Generally, the larger the S, the more information

can be considered for the learning algorithms. Therefore,

if we ignore unknown cell-IDs, we cannot have sufficient

information for classification in shorter segment length.

With longer segment length, more information can be

considered to overcome unknown cell-IDs. However, it

will decrease if S is set too long. This is because two

or more transportation modes switching in one segment

will cause prediction error easily. For solution 2, as shown
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Fig. 7. Comparisons with the three proposed solutions. (a) Solution 1:
ignoring the unknown cell-IDs. (b) Solution 2: count an unknown cell-ID
as other type. (c) Solution 3: counted by historical information with window
size 4.

Fig. 8. Comparison of segment S and window size T . (a) offline, XGBT. (b)
online, SGD.

in Fig. 7-(b), the accuracy of each learning algorithm is

not high enough compared to solution 1. Because we

consider the unknown cell-ID as the type of others, it

will dramatically interfere the learning algorithms (i.e.,

decrease recall). For solution 3, as shown in Fig. 7-(c), the

accuracies are higher than those of the other two solutions

in average. With the help of historical information (sliding

window), we can alleviate the impact of unknown cell-

IDs.

In summary, solution 3 with sliding window is more

suitable for TTI. In the following, we choose XGBT with

segment size 120 as the offline learning algorithm and

SGD as the online learning algorithm. The reason is that

we can reduce one-half of segment time but only degrade

1% accuracy.

• Accuracy with different window sizes: Fig. 8 shows the

results between different segment S and window size T
in offline (XGBT) and online (SGD) learning algorithms,

respectively.

Generally, the longer the S, the more information feed

into the learning algorithms that can achieve higher

accuracy as shown in Fig. 8. On the contrary, when

T and S are small, the results are less accurate. The

is because the amount of information is not sufficient

for the learning algorithms. With longer T , however, the

Fig. 9. Performance comparison with add-up dataset. (a) accuracy, (b) training
time, T, (c) model size, and (d) prediction time, P.

algorithms consider more historical information that can

improve accuracy even if S is small. With the help of the

proposed CISW, SGD still can achieve 94.5% accuracy

if T is 1 and S is 30 seconds as shown in Fig. 8-(b).

The best performance is accomplished when the S is

set to 240 seconds. The main reason is that the duration

between two stations of the subways in Taiwan is shorter

than 4 minutes. Thus, it improves the accuracy of subway,

and thus, also increases the overall accuracy. XGBT can

achieve 98% accuracy in average as shown in Fig. 8-(a),

and 97.8% accuracy for SGD as shown in Fig. 8-(b).

In summary, when the segment is longer, the system will

wait longer to extract cellular information and input the

data to the algorithms. Therefore, we tend to choose

shorter segment length and window size, and maintain

acceptable accuracy at the same time.

2) Classification results in online phase: The size of train-

ing data is critical for traditional learning algorithms. It implies

that the smaller dataset usually results in less accurate models.

Although CISW considers some features for classification, we

cannot claim that we have collected data for all scenarios.

Therefore, we prefer online learning algorithms that can update

models with new dataset (i.e., user’s feedback). Next, we

evaluate CISW in both offline and online learning algorithms

with add-up dataset. The accuracy, training time, data size, and

prediction time are shown in Fig. 9. We found that with feeding

more dataset, we can achieve higher accuracy in both offline

and online algorithms as shown in Fig. 9-(a). The accuracy of

online algorithm is lower than that of offline algorithm in the

beginning, but with more training data, the accuracies of them

are close. The model size of online algorithm is only 1 KB

compared to 500 KB in offline algorithm which is shown in

Fig. 9-(c). As shown in Fig. 9-(b)(d), the trend are similar

for training time and prediction time. It only takes 10 ms for

online algorithm to train the model and 1 ms for prediction.

C. Resource Consumption

Here we evaluate the battery consumption for CISW and

GPS-based learning. Smartphones Xiao-mi note 4 (3080 mAh)
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are used. We compare GPS-based learning (turn on GPS

module) and CISW (cellular information) with screen on and

off. The results are shown in Fig. 10. If the screen keeps on,

CISW can run about one more hour. When the screen is off,

CISW can save 18 hours.

VII. CONCLUSION

It is urgent for 5G networks to identify the service types of

users to allocate resources intelligently. Thus, we analyze user

mobility pattern in different motorized transportation types,

including HSR, subway, railway, and highway. In this paper,

we elaborate how to apply machine learning algorithms to

realize transportation type identification. We also propose a

system architecture that can provide accurate identification for

TTI using cellular information only. Around 500-hour dataset

are collected for performance evaluation. Experimental results

demonstrate the effectiveness of the proposed algorithm, which

can improve well-known machine learning algorithms to ap-

proximately 98% classification accuracy. The results also show

that battery consumption can be reduced about 37%. We will

continue to collect more data, and release the data to everyone.

For future work, we plan to apply deep learning with CISW

to investigate the performance.
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