We have developed a movement assistive system using EEG-controlled functional electric stimulation system. Users’ movement intentions are recognized by brain computer interface, implemented by deep learning network,the detected users’ intentions are then translated into commands to trigger a functional electric stimulation (FES) device to activate users’ particular movements, such as grasping, hand raising, holding a cup, etc. In our study, we have designed our own wireless dry-electrode EEG systemour own FES system.